The Power of Clickbait: A Critical Discourse Analysis on the Influence of Online News Headlines on Reader Perceptions

Main Article Content

Anisa Turrochmah
Steffie Mega Mahardhika

Abstract

This study investigates the use of clickbait headlines in online news and their influence on reader perception. With the growing reliance on digital media and the low reading interest in Indonesia, clickbait is increasingly used to attract engagement, often at the cost of accuracy. Using Van Dijk’s Critical Discourse Analysis framework—macrostructure, superstructure, and microstructure—this research analyzes five English-language headlines from CNN, Page Six Magazine, and the New York Post. Data were analyzed qualitatively through linguistic observation and interviews with readers from different backgrounds. Findings reveal that clickbait manipulates readers through emotional, vague, and exaggerated language. Sensationalism, curiosity gaps, and provocation were the most common techniques. Reader perception varies depending on media literacy levels. While some readers are critical and skeptical, others tend to accept information at face value. The study emphasizes the importance of critical reading skills and the need for more ethical journalism in the digital age.


 

Article Details

Section

Articles

How to Cite

Turrochmah, A. ., & Mahardhika, S. M. . (2025). The Power of Clickbait: A Critical Discourse Analysis on the Influence of Online News Headlines on Reader Perceptions. IJELT: Indonesian Journal of Education, Language, and Technology, 1(2), 357-367. https://ijelt.com/index.php/ijelt/article/view/46

References

Afandi, W., Saputro, S. N., Kusumaningrum, A. M., Adriansyah, H., Kafabi, M. H., & Sudianto, S. (2022). Klasifikasi Judul Berita Clickbait menggunakan RNN-LSTM. Jurnal Informatika: Jurnal Pengembangan IT, 7(2). https://doi.org/10.30591/jpit.v7i2.3401

Bazaco, Á., Redondo, M., & Sánchez-García, P. (2019). Clickbait as a strategy of viral journalism: Conceptualization and methods. Revista Latina de Comunicacion Social, 74. https://doi.org/10.4185/RLCS-2019-1323

Bronakowski, M., Al-khassaweneh, M., & al Bataineh, A. (2023). Automatic Detection of Clickbait Headlines Using Semantic Analysis and Machine Learning Techniques. Applied Sciences (Switzerland), 13(4). https://doi.org/10.3390/app13042456

Carcioppolo, N., Lun, D., & Mcfarlane, S. J. (2022). Exaggerated and Questioning Clickbait Headlines and Their Influence on Media Learning. Journal of Media Psychology, 34(1). https://doi.org/10.1027/1864-1105/a000298

Chen, Y., Conroy, N. J., & Rubin, V. L. (2015). Misleading online content: Recognizing clickbait as 'false news'. In Proceedings of the 2015 ACM on Workshop on Multimodal Deception Detection (pp. 15-19). Association for Computing Machinery. https://doi.org/10.1145/2832217.2839403

Daily Mail. (2023, November 10). World’s oldest woman shares her simple secret to living past 120 – and it’s not diet or exercise [Article]. Daily Mail. https://www.dailymail.co.uk/health/article-1234567/Worlds-oldest-woman-shares-secret-longevity.html

Fakhruzzaman, M. N., & Gunawan, S. W. (2022). CekUmpanKlik: an artificial intelligence-based application to detect Indonesian clickbait. IAES International Journal of Artificial Intelligence, 11(4). https://doi.org/10.11591/ijai.v11.i4.pp1232-1238

Fakhruzzaman, M. N., Jannah, S. Z., Ningrum, R. A., & Fahmiyah, I. (2023). Flagging clickbait in Indonesian online news websites using fine-tuned transformers. International Journal of Electrical and Computer Engineering, 13(3). https://doi.org/10.11591/ijece.v13i3.pp2921-2930

Fatima, A., & Nim, S. (2022). RECOGNIZING ENGLISH CLICKBAIT HEADLINES: A SYNTACTIC ANALYSIS OF ENGLISH CLICKBAIT HEADLINES IN ONLINE NEWS MEDIA THESIS. http://etheses.uin-malang.ac.id/id/eprint/38686

Jalal, F., & Sardjunani, N. (2005). Increasing literacy in Indonesia. In UNESCO DIGITAL LIBRARY (Issue Literacy, pp. 1–21). UNESCO.

Jan Blommaert. (2005). Discourse A Critical Introduction. Cambridge University Press. https://drive.google.com/file/d/1Ygm4feVlhsnAKT7YzC_jdEfZ5qrEKtru/view?usp=drivesdk

Karaca, A. (2019). News Readers ’ Perception of Clickbait News. Kadir Has University.

Kertanegara, M. R. (2018). Penggunaan Clickbait Headline pada Situs Berita. Jurnal Komunikasi, 11(1).

Lischka, J. A., & Garz, M. (2023). Clickbait news and algorithmic curation: A game theory framework of the relation between journalism, users, and platforms. New Media and Society, 25(8). https://doi.org/10.1177/14614448211027174

Lombardi, D. (2018). Critical Discourse Analysis of Online News Headlines: A Case of the Stoneman Douglas High School Shooting. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1483958&dswid=8969

Lu, Y., & Pan, J. (2020). Capturing Clicks: How the Chinese Government Uses Clickbait to Compete for Visibility. Political Communication. https://doi.org/10.1080/10584609.2020.1765914

Malihah, L. (2023, May 29). Clickbait: Jenis, Alasan Pro dan Kontra serta Tips Penggunaannya. Bee.id. https://www.bee.id/blog/clickbait-jenis-alasan-pro-dan-kontra-serta-tips-penggunaannya/

Mandarani, V. (2018). Buku Ajar Critical Discourse Analysis. In Buku Ajar Critical Discourse Analysis. Umsida Press. https://doi.org/10.21070/2018/978-602-5914-24-9

Molyneux, L., & Coddington, M. (2020). Aggregation, Clickbait and Their Effect on Perceptions of Journalistic Credibility and Quality. Journalism Practice, 14(4). https://doi.org/10.1080/17512786.2019.1628658

Mukherjee, P., Dutta, S., & de Bruyn, A. (2022). Did clickbait crack the code on virality? Journal of the Academy of Marketing Science, 50(3). https://doi.org/10.1007/s11747-021-00830-x

Munger, K., Luca, M., Nagler, J., & Tucker, J. (2020). The (NULL) effects of clickbait headlines on polarization, trust, and learning. In Public Opinion Quarterly (Vol. 84, Issue 1). https://doi.org/10.1093/poq/nfaa008

Nim, B. (2008). TEUN VAN DIJK’S DISCOURSE ANALYSIS OF SPEECHES, ANALYZED FROM RHETORIC ELEMENT. http://repository.uinjkt.ac.id/dspace/handle/123456789/7199

PAN, L. (2023). The ideologies of Mandarin Excellence in UK news reports. Journal of Multilingual and Multicultural Development, 44(6). https://doi.org/10.1080/01434632.2020.1835927

Panjaitan, E. R., Mandela, F., & Surista, A. (2024). THE STUDENTS’ PERCEPTION TOWARDS READING STRATEGIES AT 2ND SEMESTER STUDENTS OF STBA JIA IN ACADEMIC YEAR 2021/2022. PROJECT (Professional Journal of English Education), 7(1), 1–8. https://doi.org/10.22487/27765660.2022.V2.I2.15898

Pengnate, S. F., Chen, J., & Young, A. (2021). Effects of Clickbait Headlines on User Responses: An Empirical Investigation. Journal of International Technology and Information Management, 30(3). https://doi.org/10.58729/1941-6679.1440

Pramesti, O. L. (2020). Clickbait Headline in News of Online Prostitution Case. Journal Pekommas, 5(1). https://doi.org/10.30818/jpkm.2020.2050107

Pujahari, A., & Sisodia, D. S. (2021). Clickbait detection using multiple categorization techniques. Journal of Information Science, 47(1). https://doi.org/10.1177/0165551519871822

Sagita, R., Enri, U., & Primajaya, A. (2020). Klasifikasi Berita Clickbait Menggunakan K-Nearest Neighbor (KNN). JOINS (Journal of Information System), 5(2). https://doi.org/10.33633/joins.v5i2.3705

Scott, K. (2021). You won’t believe what’s in this paper! Clickbait, relevance, and the curiosity gap. Journal of Pragmatics, 175. https://doi.org/10.1016/j.pragma.2020.12.023

Sepulang Sekolah. (2024, February 21). PENGAKUAN! SAYA SEORANG GUY! Kenapa Orang Kita Literasi Rendah & Antisains? | Learning By Googling [Video]. YouTube. https://www.youtube.com/watch?v=rMbira1-7gM

Uddin Rony, M. M., Hassan, N., & Yousuf, M. (2018). BaitBuster: A clickbait identification framework. 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, 8216–8217. https://doi.org/10.1609/aaai.v32i1.11378

Wahyudy, O. (2020). Persepsi Generasi Milenial di Jabodetabek dalam Mengakses Berita Clickbait Tentang Virus Corona di Media Daring. Bachelor Thesis thesis, Universitas Multimedia Nusantara. Thesis.

Wardani, I. N., & colleagues. (2021). Penggunaan clickbait headline pada portal berita Tribunnews.com. Universitas Gadjah Mada. Retrieved from https://etd.repository.ugm.ac.id/home/detail_pencarian_downloadfiles/1436260

Wei, F., & Nguyen, U. T. (2022). An Attention-Based Neural Network Using Human Semantic Knowledge and Its Application to Clickbait Detection. IEEE Open Journal of the Computer Society, 3. https://doi.org/10.1109/OJCS.2022.3213791

William, A., & Sari, Y. (2020). CLICK-ID: A novel dataset for Indonesian clickbait headlines. Data in Brief, 32. https://doi.org/10.1016/j.dib.2020.

Similar Articles

You may also start an advanced similarity search for this article.